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SUMMARY

What is believed to be a new and unique method of solving Lambert's problem

is described herein. The basic idea of this method is to iterate on a single

variable through empirical curve fitting. Whenthe two position vectors r I

and 22 are unequal in magnitude, the variable iterated upon is the true

anomaly of the smaller of the two vectors; when _rI and _2 are equal in

magnitude, the variable iterated upon is eccentricity. Eccentric anomaly

is nowhere involved in this method and semi-major axis is calculated only as

a matter of arbitrary interest after a solution has been found.

The primary feature of this method is that there is absolutely no limitation

of the flight angle between _rI and _rs with which it can cope. Flight angles

exactly equal to and nearly equal to 180 ° can be accommodated with no more

difficulty than any other flight angle between 0° and 360 °. Multiple orbit

solutions (flight angles greater than 360 ° ) are also readily obtained by

this method when they exist.

A secondary feature of this method is that it provides the user with a very

good sense of the trajectory geometry of solutions, both before and after

their actual calculation. It will be obvious to the user why some mathematical

solutions are not operationally feasible and why some multiple orbit solutions

are non-existent. This user sense of trajectory geometry is attributable to

the fact that no new and/or nebulous parameters are involved in this method;

all parameters are long-established and have obvious physical significance.
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While this method has been extensively progrsmmedim development form, it

hss not yet been progrsmmedss s subroutine for use in guidsnce problems.

Thus, it has not been compsreddirectly with other methods with regsrd to

numerical results and running time.
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TERMS AND NOTATIONS

The following are definitions of the terms and notations used herein. These

terms and notations are actually defined in the text when first used; they are

listed here for the sake of convenient reference.
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Direct

trajectory

Multiple
orbit direct

trajectory

Indirect

trajectory

The two position vectors in three-dimensional space involved

in a Lambert's problem, their origin being the center of the

force field. The convention followed herein in identifying

the two vectors is that rI < r2.

Magnitudes of r I and _, where rI < r_

r2/r I where rl < r_

The central angle between rI and r_, where 0 < A < 180 °

The set of elements rI , r2, and A, describing the positional

geometry of s Lambert's problem when dealt with two-

dimensionally in the plane containing rI snd __-_(or arbitrary

plane when A = 180°).

True anomaly of rI on s conic fitting s vector set.

Eccentricity of conic fitting a vector set.

Period of ellipse fitting a vector set.

Semi-latus rectum of a conic fitting e vector set.

R.sin(A)

i- R.cos (A)

R - i

That segment of a conic fit%ing a vector set connecting rI and

r which subtends the central angle A.
2

Trajectory consisting of the segment of the ellipse fitting a

vector set which subtends A (direct trajectory) plus an integer

number of complete 2x circuits of the ellipse.

That segment of a conic fitting a vector set connecting rI and

r2 which subtends the angle 560 ° - A.
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Multiple orbit
indirect

trajectory

Direct flight
time

Indirect flight
time

Multiple orbit

direct flight
time

Multiple oribt

indirect flight

time

Trajectory consisting of the segment of the ellipse

fitting a vector set which subtends the angle 360 ° - A

(indirect trajectory) plus sn integer number of complete

2_ circuits of the ellipse.

Flight time between ri and r2 on a direct trajectory.

Denoted as FT d.

Flight time between ri and re on an indirect trajectory.

Denoted as FT..
i

Flight time between ri and r_ on s multiple orbit direct

trajectory. Denoted as FTdN , where (N-I) is the integer

number of complete 2_ circuits within the elliptical

trajectory.

Flight time between ri and r2 on s multiple orbit indirect

trajectory. Denoted as FTiN , where (N-I) is the integer

number of complete 2_ circuits within the elliptical

trajectory.

INTRODUCTION

Lambert's problem is that of finding a conic trajectory which has a specific

flight time between two fixed position vectors. Figure i shows two such

position vectors, r__aiid r__, as might occur in a typical realistic three-

dimensional Lambert's problem.

rl

i J

r,

7
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Since any conic connecting the two position vectors in three-dimensional

space must lie in the plane containing the two vectors, the problem can

be reduced to that of finding the conic trajectory having the desired

flight time connecting two radii having magnitudes rI and r_ and having

a fixed central angle (A) which is less than or equal to 180 ° . The

quantities, rl, r_, and A, in the two-dimensional system shown in figure 2

to which any Lambert's problem can be reduced, will be collectively referred

_e calculation of these quantities is quite straight-to as a "vector set".

forward.

=r2 (_ + Y_2 + z2

where 0° < A < 180 °

Figure 2

Of course, when A = 180 °, no plane is defined by the two position vectors;

however, this does not mean that the original problem cannot be reduced to

and solved in a two-dimensional system. When A = 180 ° in a particular

Lambert's problem, the trajectory having the desired flight time as derived

in a two-dimensional system is free to assume any three-dimensional orienta-

tion about the axis formed by_1 and _. There will be a "best" three-

dimensional orientation of this conic solution from the standpoint of the



8

overall flight plan. Similarly, there will be a "best" solution of shy

Lambert's problem (it will be shownthat there are at least two solutions

to any Lambert's problem_), regardless of the value of A_ from the same

operational standpoint. Both the determination of the best orientation of

a solution whenA = 180° and the determination of the best solution of any

problem should not be considered as being part of the Lambert's problem

itself, but instead considered operational problems of the overall flight

plan of which the Lambert's problem trajectory is but a segment.

PRINCIPLEOFM_THOD- NON-_JLTIPLEORBITSOLUTIONS(r I _ r2 )

In the following development pertaining to all problems wherein r I _ r 2

the convention is adopted of denoting the smaller of the two vector msgni-

tudes as r I , the larger as r_. The side of a typical vector set is depicted

such that A is measuredcounter-clockwise from r I to r2 as shownin figure 3.

On the next few pages, s progression of conic trajectories having extreme

and significant values of eccentricity and flight time will be fit to the

vector set, the periapsis of each trajectory being maintained ss horizontal

and pointed to the left of the page.

f_

Figure _.

*Strictly speaking, except when A = 18_and the desired flight time is small

enough to preclude multiple orbit solutions.
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Only non-multiple orbit trsjectories passing directly across A will be

initially considered. This type of trajectory will be referred to simply

os DIRECT, and a trajectory of this type yielding the desired flight time

in a Lambert's problem will be referred to as a DIRECT solution. The true

anomaly of rI is denoted as S and is measured in a counter-clockwise

direction from the periapsis horizontal at the left. The eccentricity of

any trajectory fit to a vector set is given by the following equation, the

derivation of which is in appendix i.

e

R- I

cos (s) - R.cos (S + A)

r 2

where R =-
r I

A theoretical zero flight time would be achieved by a straight-line trajec-

tory directly connecting the two vectors. The value of S for this trajectory

is denoted as SI and is given by the following:

-I
Sl : tan (oo (A)- r:/-

sin (A) -')

-90 ° _ Sl < 90 °

The eccentricity of this trajectory is infinite (see appendix 2). The value

of SI as shown in figure 4 is negative. Geometrically defined, SI is that

value of S such that the projections of rI and r2 on the horizontal axis are

equal in magnitude and are coincident (have same sign).
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51

Figure 4

If the vector set is rotated counter-clockwise such that S algebraically

increases, the conic trajectories fitting the vector set decrease in

eccentricity and increase in flight time. The value of S corresponding

to the parabolic trajectory realized when eccentricity decreases to unity,

is denoted as $2 and is given by the following:

where R = r_/i" 1

× : R-sin(A)

Y =l- tacos(A)

Z=R-I
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The factors determining the quadrant in which $2 lies are described in

appendix 3, together with a derivation of the above expression for $2.

As pictured in figure 5, $2 is negative.

Figure 5

Rotating the vector set further counter-clockwise, the flight time of the

fitting trajectories increases further and eccentricity decreases until it

reaches a minimum. The value of S corresponding to the trajectory having

the minimumpossible eccentricity is denoted as $5 and is given by the

following:

-i ( sin (A))= tan "I (X) $2 + $6$5 = tan rI/r_ - cos (A) = SI + 90 ° - 2

0 ° < 83 < 180 °

The derivation of this first expression is given in appendix 4. As shown

in figure 6, $5 is that value of S such that the projections of rI and r_,

on an axis perpendicular to the periapsis horizontal, are equal in magnitude

and are coincident. The fact that $3 is exactly half way between $2 and $6

in all problems, as indicated in the last expression above, is based on

computer programming experience, not on mathematical derivation.
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Rotating the vector set further counter-clockwise until r2 becomes the

periapsis of the fitting ellipse as shown in figure 7, eccentricity

increases from its minimum of es3 and flight time continues to increase.

The value of S at this condition is denoted as $4 and is given by the

following:

$4 = 180 ° - A

The values of eccentricity and flight time at $4 are neither extreme nor

significant; $4 is introduced only for convenience in dealing with multiple-

orbit solutions later.

i
,i x

g ff ",, Figure 7
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As the vector set continues to rotate counter-clockwise, both the

eccentricity and flight time continue to increase while the period of

the ellipse fitting the vector set decreases to a minimum. The value

of S corresponding to this minimum-period ellipse is denoted as $5.

While exact explicit expressions for all other significant values of S

have been readily derived, no such expression has been derived for $5.

A more detailed discussion of $5 and an approximate empirical expression

for its value are given in appendix 5. The values of eccentJi_fby and

flight time at $5 are neither extreme nor significant.

J

sl _'\
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Continuing to rotate the vector set further counter-clockwise, eccentricity

increases to unity and flight time becomes infinite. The value of S

corresponding to this limiting parabolic trajectory is denoted as $6. The

expression for $6 is very similar to that for S2_ their both being the two

roots of the same quadratic equation. See appendix 3 for a description of

the factors determining the quadrant in which $6 lies and s derivation of

the expression for $6.

-_ -XcY -Z + Y - Z
$6 : tan _ 2

X - Z

where R : r2/r I

x :msin (A)

Y : i - R-cos(A)

Z = R - I

Figure 9
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_ue preceeding series of from SI to $6 has shownDh_t the fl_ght time on

all possible non-multiple orbit trajectories directly scross A can be

represeuted as a continuous, single-valued, monotonic fui_ction of S over the

range of from SI to $6. _e range of flight time represented, as shownin

figure i0, is from zero to infinity.

"+ ,W C

f

t - -- "#"--'---i- ---'+- ...........
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It must be said at this point that the assertion that direct flight time

expressed us _ function of S has no maxima, minima, or inflection points

between SI and $6, is based entirely upon early intuition and later experience.

An expression for the derivative of direct flight time with respect to S for

any vector set has yet "to be derived and proven to have no zero values

between SI and $6. All progra_ning experience to date has indicated that

no such zero value of this derivative exists.

All of the trajectories represented in figure i0 are direct; i.e., they all

pass directly across A without ever going around the other side of the center

of attraction. As might be expected, there is another continumm of trajec-

tories passing around the other side of the center of attraction having

flight times varying from zero to imfinity. This type of non-multiple orbit

trajectory, which passes arsund the "back" side of the center of attraction

withm_t ever passing across A, is referred to as INDIRECT.

For a given value of S, there is only one conic which fits a vector set.

_en the conic is an ellipse, that segment of it subtending A constitutes

a direct trajectory while the remainder of the ellipse is an indirect

trajectory. Thus, whenever the value of S is such that e < i, there will

be both s direct and an indirect trajectory fitting a vector set, the direct

and indirect flight times always being different except in singular cases.

0nly when S is between $2 and $6 is the conic fitting the vector set an

ellipse; i.e., the S of any ellipse fitting the vector set must lie betwee_

$2 and $6. _e lower limit of the range of S associated with the indirect
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trajectories fitting a vector set is $2. By definition, the conic fitting

the vector set at $2 is a para_ola which subtends A. Peferrimg to figure 5,

it can be seen that the indirect flight time at $2 is infinite. As S

increases frcm $2 to $6, indirect flight time decreases_ as can be seen

in figures 5 through _wherein the indirect trajectories are represented

by the dashed portioms of the fitting conics.

The upper limit of the range of S associated with indirect trajectories

is denoted as $7. Continuing the progressive counter-clockwise rotation

of a typical vector set as shown in figures 4 through 9, $7 corresponds

to s theoretical zero indirect flight time. Its value and that of the

corresponding eccentricity are given as follows. See appendix 6 for

complete derivations.

ST = 180 ° - A/2

es7 : sec (A/2)

This indirect trajectory is not readily depicted in figure ii as it is

coincident with both rI and r2 and passes through the center of attraction.

s7""
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Figures 12_ and 13 show the continuous variations of direct and indirect

flight times and eccentricity as a ftulction of S between SI and $7 for

a typical vector set. The following table summarizes values of S

corresponding to significant values of eccentricity and flight time.

\

Sl,
L

SI

[

$2

$3

S6

s7

e
i im

co

i

emin

i

sec(A/2)

Direct

Flight Time

0

finite

finite

Indirect

Flight Time

(FT i)

co

finite

finite

0

* Not applicable
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As is the case with direct flight time, an expression for the derivative of

indirect flight time with respect to S for any vector set is yet to be

derived and proven to have no zero values between $2 and $7. The assertion

here that indirect flight time is a monotonically decreasing function of S

is based upon programming experience.

There is a relationship between S and direct and indirect flight times

similar to that shown in figure 12 for any vector set wherein rI _ r_.

Thus, for any specific finite flight time greater than zero, there are

two non-multiple orbit solutions for any vector set, the one solution

being a direct trajectory and the other an indirect trajectory.

The magnitudes of the seven significant values of S of frcm SI to $7

are determined by the A and the ratio r2/r I of the vector set. These

relationships are graphically illustrated in appendix 7. Significant

invariant relationships are,

s3 = Sl + 90° s3 = (s2 + s6) / 2

It can be seen in figure 12 that where the two curves cross, direct

flight time is equal to indirect flight time. Thus, for any vector set,

there is a fitting ellipse upon which the flight time around one side

of the center of attraction is equal to the flight time aroufld the other

side; the value of S corresponding to this ellipse is between $5 and $6_

usually very close to $5 for most vector sets.

* When A = 180°, these two solutions for a given flight time are geometrically

identical and thus it cannot be said that there are two different solutions.
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Whenthe A of a vector set is 180° , the terms "direct" and "indirect",

as previously defined, are not applicable. In this instance, and only

in this instance, would the relationship between flight times and S as shown

in figure 12 be absolutely symmetrical about $4; the value of' $4 then being

zero •

MULTIPLE ORBIT SOLUTIONS (r! / r )

The notations FTdN and FTiN have been found convenient in dealing with multiple

orbit solutions to Lambert's problem. They denote, respectively, direct and

indirect flight time on orbit number N, where N is an integer greater than

unity. _hen N is not expressed, it is understood to be unity. The notations

FTdand FT.m thus denote direct and indirect non-multiple orbit flight times,

respectively, as described up to this point on the preceeding pages.

Figure 14 shows the physical significance of direct and indirect multiple

orbit flight times on the same ellipse fittimg a vector set; S is the same

for both trajectories. The darker solid lines in figure 14 represent the

basic direct and indirect trajectories and flight times, the dashed lines

represent the additional elliptical periods. A convenient interpretation

of the notations FTdN and FTiN is to consider the alphabetic subscripts (d)

or (i) as denoting which part of the ellipse, direct or indirect_ is traversed

N times by the trajectory.
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The period (P) of an ellipse fitting a vector set for any value of S between

$2 and $6 is equivalent to the sum of direct and indirect flight times.

P(S) = FTd(S ) + FTi(S )

Figure 15 shows the variation of period as a function of S for a typical

vector set. As noted earlier, an exact explicit expression for $5, whereat P

is a minimum, has not yet been derived; the empirical expression for $5 in

appendix 5, which is based upon cQmputer results, is approximate.

J

I;

I

f
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i r I _ I
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SO is no___tequivalent to the value of S where _d = FTi' except in singular

cases. Taking the derivative of the last equation with respect to S, it

can be seen that $5 occurs where the sum of the derivatives of direct snd

indirect flight time is zero.

At $5, where P

dP . dFT d + d_'2i
is minimum: dS

dS dS

= 0

At any specific value of S between $2 and $6, direct and indirect multiple

orbit flight times are given by the following expressions:

= N × n d + (N-l)× n i

--(N-l)× n d + N × n i

Figure 16 shows the relationships between the basic direct and indirect flight

times (FTd and FTi) , the second orbit direct 8nd indirect flight times (FTd2

and FTi2), and S of a typical vector set.

B

- i
e

F'.,. , !

!

Figure 16
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The minimum values of m_11tiple orbit direct and indirect flight times occur

at the values of S where the derivatives of the above equations with respect

to S equal zero.

At minimum FTdN: d_dN = dF_d + (N-l) d__P = N d_d + (N-I) __dFTi = 0
dS dS dS dS dS

At minimum FTiN:
dFTi : dr i+ (ml) dP : (ml) dud + N •dni :
dS dS dS dS dS

Therefore, (N_-NI) _dFTids : - d_dds

Since dFTd/dS is always positive and dFTi/dS is always negative, in order

for these last equations to be satisfied, the minimum of FTdN must always

occur at a v_lue of S where dP/dS is negative and the minimum of FTiN must

always occur at a value of S where dP/dS is positive. In other words, the

minimum values of FTdN of a vector set all occur at values of S less than $5,

while the minimum values of FTiN all occur at values of S greater than 85.

This effect can be seen in figure 16.

As N becomes very large, the coefficient N/(N-I) in the above equations

approaches unity, in which limiting case the equations are satisfied by

the condition

dFT d = -dFT i

dS dS

which occurs at $9. In other words, as N becomes very large, the S corres-

ponding to a minimum flight time approaches $5 as a limit.
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LAMBERT'S PROBLEM WHEREIN rI : r_

It has been shown on the preceeding pages that S can be conveniently used

as the single independent variable in the iterative process of solving

Immbert's problem wherein rI # r2; more specifically, the relationships

between S and flight times lend themselves quite readily to empirical curve

fitting in the iterative process of finding the value of S yielding a desired

value of a specific type of flight time (the value of S having been determined,

the conic fitting the vector set is defined and a solution to Immbert's

problem is achieved). There are several features of these relationships which

make S a very convenient independent variable. The range of S associated

with all possible values of any specific type of flight time is finite and

its limits are explicitly defined. Within any such range of S, flight time is

a single-valued, continuous, smooth, function of S. FT d is absolutely

continuous and smooth at $2 as is FT. at $6; i.e., in no case does the
l

relationship between S and non-multiple orbit flight time experience a

discontinuity or exhibit any extraordinary behavior when the conic fitting

the vector set becomes a parabola or changes from an ellipse to a hyperbola

or vice versa.

When the two position vectors in a Lambert's problem are equal in magnitude,

the parameter S cannot be used as the independent variable in the iterative

process of finding a solution. This is because when r I = r_, the true

anomalies of the position vectors are not continuously variable; the true

anomaly of a position vector can have one of two magnitudes having arbitrary

sign. This is due to the inherent symmetry of any conic about its major axis.
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When any conic is fit to a vector set having r_ = r2_ the true anomaly of

one position vector always equals the negative of the true anomaly of the

other.

As in the case of vector sets wherein rI _ re, there is a sequence of

conics which can be fit to vector sets wherein rI = r_, which illustrates

a continuous variation of both FTd and FT i of from zero to infinity. The

sequence of conics for vector sets having rI _ re was illustrated in figures

4 through 9 and ii. The sequence of conics for vector sets having rI = r

is shown in the following table. The terms "direct" and "indirect" apply

to vector sets wherein rI = r_ equally as well as to the much more general

category of vector sets wherein rI _ r_.
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Since S is not continuously variable when rI = re, it is necessary to use

a different parameter as the independent variable in the iterative process

of solving this type of Lambert's problem. The conic parameters, semi-major

axis, semi-minor axis, and apiapsis radius, are undesirable for this purpose

because of their behavior when the conic becomes parabolic. The conic

parameters semi-latus rectum, periapsis radius, and eccentricity are much

more suitable since they do not exhibit such behavior.

Referring to the preceeding table, it appears that both FT d and FT i can be

expressed as single-valued, continuous_ monotonic functions of semi-latus

rectum (p), or for the sake of generality, of the ratio p/r. It would thus

seem that semi-latus rectum is a suitable independent variable in the iterative

process. However, in vector sets wherein A = 180 °, regardless of whether r I

is equal to r_ or npt_ semi-latus rectum magnitude is invariant, being a

function only of the ratio _2/ri. See appendix 8. It can be seen that the

expressions for the ratio p/r in the preceeding table become equal to i when

A = 180 ° • _ghen r_ = r_ and A is very close to 180 °, the range of p/r asso-

ciated with all ellipses, the two parabolas, and low eccentricity hyperbolas

fitting the vector set, is very restricted; as A approaches 180 °, this range

of p/r becomes increasingly restricted until when A = 180 °, p/r becomes

invariantly equal to i. Because of this restriction and possible invariance

of p/r in this realm of operationally practical trajectories, p/r is considered

unsuitable as the independent variable in the iteration process of solving

Lambert's problem when r I = r_.
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Periapsls radius and eccentricity have the disadvantage that both FTd and

.

FTi are double-valued functions of them over part of their ranges.

Of the two, it is felt that eccentricity is the more suitable independent

variable because the only variable in the flight time equations used in this

type of problem is eccentricity, and the relationships between eecentriclty

and flight times are very similar to those between S and flight times. This

latter similarity can be seen in figure 17 (ccmpare to figure 15), where the

abscissa has beau made double-valued to eliminate the otherwise grsphlc

confusion of both FTd and FT i being double-vahed functions of eccentricity.

* It should be pointed out that both FTd and FTi can be expressed as comtlnuous,

smooth, slngle-valued, monotonically increasing functions of the mpsls radius

intersecting that segment of the conic which constitutes the trajectory concerned.
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Any specific point on the abscissa scale in figure 17 represents a specific

conic fit to the vector set. Significant points and ranges along this abscissa

scale are alphabetically identified for relation to the sequence of conics

illustrated in the preceeding table. Since this abscissa scale of eccentri-

city is double-valued, when the value of eccentricity is less than sec A/2,

in order to define a specific conic it is necessary to specify not only its

eccentricity but also whether the true anomalies are ± A/2 or i (180 °- A/2).

Because of the very close similarity between figures 15 and 17, it would seem

to be rather repetitious at this point to go into any analysis of multiple

orbit flight times for vector sets wherein rI = r2 . Curves representing

multiple orbit flight times similar to these shown in figure 16 can be similarly

derived from figure 17 by the addition of values of period (P) and FT d or FT..z

The analysis of minimum multiple orbit flight times for vector sets having

rI # r2 presented on pages 24 and 25 can be similarly applied to those having

rI = r_, using a double-valued abscissa scale of eccentricity instead of S.

The similarity between the roles of $5 when rI _ r_ and eminp when rI = r_

with regard to minimum multiple orbit flight times is rather straightforward.

However, two significant differences between the two categories of Lambert's

problems, those having rI _ r_ and those having r_ = r_, should be pointed out.

The range of eccentricity associated with the complete range of _fd of from

zero to infinity, is not closed, whereas the similarly associated range of

S when rI # r2 is closed (SI to $6). There is an exact explicit expression

for the value of eccentricity (eminp) of the ellipse fitting the vector set

having minimum period (the true anomalies on this ellipse always being

(180 ° - A/2)). This expression and its derivation are given in appendix 9.



There is no knownexact explicit expression for $5; see appendix 5. The

close similarity between the relationships of S to flight times whenr I # r_

and eccentricity to flight times when_ = r_ is not only convenient to an

understanding, but it also facilitates programminglogic in the empirical

curve fitting iterative process of finding solutions to both types of

Lambert's problems.

CHOICE OF SOLUTIONS

The preceeding pages have been a description of different types of solutions

of Lambert's problem, the problem being that of defining a conic trajectory

having a specified flight time between two position vectors. It has been

shown that for any value of required flight time there are at least two

solutions for any vector set and additional solutions of the multiple orbit

type if the required flight time is large enough.

A set of solutions of a given Lsmbert's problem, as derived from relation-

ships of the type shown in figures 15 and 17_ are completely insensitive

to physical reality and to the remainder of the vehicle's flight plan.

Some of these solutions coul_ well consist of trajectories having periapsis

radii which are less than the physical radius of the central attracting body.

Similarly, these solutions are not concerned with how the vehicle arrived

at the initial position vector in the problem or with what the vehicle has

to do after it reaches the terminal position vector.
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Of a group of solutions to a Lambert's problem, there is usually one which

is the best from the standpoint of its relationship to the immediate flight

plan and physical reality. The obviously foolproof method of finding this

one best solution is to find all possible solutions to the Lambert's problem

and analyze them. However, this procedure is not efficient and in most

practical operational applications is unnecessary. The nature of the imme-

diate flight plan, linked to the Lambert's problem trajectory at its

initial and terminal position vectors, will usually indicate either which

solution is the best or which category of solutions contains the best. For

instance, the angular sense of motion of the flight plan, in relation to the

vector set of the problem and the center of the local force field, will usually

determine whether the best solution is direct or indirect, and the magnitude

of the flight time required will usually indicate, based upon experience,

whether the best solution is of the multiple or nDnomultiple orbit type.

A good example is in the solving of Lambert's problem in thrusting programs

where one need only be concerned with direct non-multiple orbit solutions;

the only applicable solution is always on the FT d curve.

When the possibility exists of the best solution of a Lambert's problem in

an operational application being of the multiple orbit type, it would appear

to be necessary to find both solutions on either the FTdN or FTiN curve

involved and analyze them to determine which is the more operationally suit-

able. This is because at present no simple generalities have been established

as to how two solutions on a given curve differ with regard to trajectory

characteristics. The two solutions on a curve are presently differentiated

only b F stating whether their S (or e when rI = rs) is greater or less than
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that of the minimumflight time on the curve. It is hoped that experience

will reveal somerelationship between the values of S (and eccentricity when

r1= r2) of these pairs of solutions and their energies or other charac-

teristics influencing operational suitability.

Regardless of whether it is obvious which of the types of flight times is

going to be the best operational solution of Lambert's problem before finding

any of these solutions, or if the factors determining the suitability of a

solution are not as obvious such that a numberof solutions must be found

and analyzed, it is necessary in finding any one solution to constrain the

iterative process to a specific type of flight time.

To effectively perform this constraint, it is necessary to be able to distin-

guish between the different types of flight time solutions to Lambert's

problem. The two most general categories of flight time appear to be

multiple orbit and non-multiple orbit. Within these two categories, speci-

fying the following characteristics of a flight time will define it as a

unique solution.

Non-multiple orbit

Multiple orbit

- i.

- l°

2.

3.

Direct or indirect

Direct or indirect

Number of orbit

S greater or less than that of

minimum flight time when rI _ rs, or

eccentricity greater or less than

that of minimum flight time when

rI = r2 •
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FINDING A SPECIFIC TYPE OF SOLUTION

The iterative process of finding any one type of solution of a Lambert's

problem involves the calculation of values of flight time for different

values of S when rI _ r_, and for different values of eccentricity when

rI : r2 . These calculations of flight time are normally based upon

established explicit equations of the form,

FT : FT (8, r, e)

where 8 is the true anomaly at position radius r on a conic having

eccentricity e, and FT is the flight time from periapsis. Of course,

the gravitational constant _ of the central force field occurs in these

equations but its value is a constant in any one problem. When rI # r2,

both eccentricity and the two values of e in a problem (of rI and rs ) are

explicit functions of S; when rI = r2, e can have either of two fixed values

within a problem and eccentricity is the independent iterative variable.

There is no one explicit flight time equation based on true anomaly which

is applicable to all values of eccentricity; three different equations must

be used to accommodate all possible values. Each equation is applicable to

values of eccentricity either less than, equal to, or greater than unity.

These equations are given in appendix i0. The inherent practical limit of

the continuity of these elliptical and hyperbolic flight time equations in

the realm of eccentricities very close to unity in a given Lambert's problem,

is also discussed in appendix i0 together with series expressions for flight

time which do not exhibit this undesirable behavior.
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The flight time to be calculated is not always found by simply takimg the

difference between the flight times from periapsis to the two position

vectors as given directly by these equations or series. It is necessary

to consider whether the flight time to be calculated is direct or indirect

and interpret the signs of the values given by the equations or series

accordingly. Multiple orbit flight times are calculated by adding

appropriate integer multiples of period to either the direct or indirect

non-multiple orbit flight times.

There are a number of ways of controlling the iterative process in finding

s solution of a given type. When this method of solving Lambert's problem

was first developed in 1961, the iterative procedure used was to vary S by

discrete steps, changing the sign and size of the steps such that the corres-

ponding flight time converged on the desired value. This simplest type of

iterstive procedure is very time consuming.

The method presently used by the author consists of a series of fits of

equilateral hyperbolas to known points on the appropriate flight time-S

)*.curve (or flight time-eccentricity curve when r I = r2 The analytic form

of this hyperbola is quite simple,

K =(FT - FT') (S - S')

such that the root of the equation for the value of desired flight time in

the Lambert's problem is given explicitly.

K

S = (FT - FT') + S'

*A Newtonian iteration cbuld probably be used, but the equations fQr the
derivatives of the flight time-S curves are very unwieldly and it is doubtful

that this method would offer any advamtage over the described curve fitting method.
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_e constants K, S', and FT', which usually have no realistic significance,

are determined in a specific curve fit.

The primary advantage in using an equilateral hyperbola instead of, for

example_ a quadratic, is that it will always have only one root for any

value of flight time. Thus, there is never any question as to which root

to take, as indicated by the last equation. This makes the equilateral

hyperbola quite ideal in describing the relationships between S (or e when

rI = r_) and both direct and indirect non-multiple orbit flight times,

because in both cases there is only one value of S (or e) corresponding to

any specific value of flight time, as can be seen in figure 12 (and 17).

A secondary advantage in the use of an equilateral hyperbola is that it

can be readily fit to either three points, two points and an asymptote, or

one point and two asymptotes.

It would seem that the equilateral hyperbola is unsuitable for dealing with

multiple orbit flight times because for a specific value of flight time

above the minimum, there will be two corresponding values of S (or e when

rI = r_) as can be seen in figure 16 (and 17). However, in any programmed

logic, this minimum of a FTdN or FTiN curve should be defined before attempt-

ing a solution in order to ascertain that a solution exists; this minimum

flight time must be less than that of the desired flight time. Once a

solution is shown to exist, this minimum flight time point can be used as one

of the points to which the hyperbola is fit in describing either "half" of
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the complete FTdN or FTiN curve, each half containing one of the two

solutions. The "half" of the curve to which the hyperbola is fit will

depend upon one of the specified characteristics of the solution sought

as described at the very end of the previous section.

The following is a description of the hyperbola fit iterative procedure

used by the author in finding a specific type of solution of a Lambert's

problem. While the wording of this description is strictly applicable to

the far more general category of problems wherein rI _ r2 ( and the inde-

pendent variable of iteration is S as shown in figure 16), the application

of this method to the rather uncommon category of problems wherein rI = r2

(and the independent variable is eccentricity as shown in figure 17) should

be obvious.

I. Determine three consecutive members of the set of significant values

of S (SI to $7), the corresponding values of flight time of which

bracket the desired value of flight time.

2. Fit an equilateral hyperbola to these three flight times-S conditions.

Usually the three values of flight time at the three significant values

of S will be finite, in which case the hyperbola is fit to three points.

However, when an infinite value of flight time is involved, as is the

case for direct flight time at $6, for indirect flight time at $2, and

for all multiple orbit flight times at both $2 and S6, the value of S

concerned is considered as an asymptote to the first hyperbola fit.

3. Calculate the root (value of S) of the hyperbola corresponding to the

desired flight time.
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4. Calculate the actual flight time corresponding to this value of S as

given by the appropriate flight time equations (see appendix I0).

5. Fit a second hyperbola to the point derived from step 4 and the two

points (or point and asymptote) of the previous hyperbola fit which

are closest to the desired flight time. The flight times of the three

points (or points and asymptote) should always bracket the desired

flight time.

6. Take the root of this second hyperbola, calculate actual flight timej

fit another hyperbola, etc. This iterative procedure should be termi-

mated when the actual flight time calculated for a root is found to be

exactly equal to or within a specified tolerance of the desired flight

time, or whenever:

a. No calculable change in flight time occurs for a change in S.

b. The root of a hyperbola is exactly equal to the value of S used in

a previous hyperbola fit.

c. The root of a hyperbola is outside the range of S defined by the

extreme values of S involved in the fit of the immediate hyperbola

(remembering that these extreme values of S must bracket the desired

value of S since the corresponding flight times bracket the desired

flight time).

In all available experience with this method, most solutions are obtained in

less than 6 iterations. This same experience indicates that this efficiency

can be improved by using a modified hyperbola having the general form,

K = - (S - S') Q

where Q would be given by an empirical equation as a function of R and A.

This empirical equation has yet to be developed.
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Appendix I - Equation for Eccentricity

Two positions at radii rI and r_ on a conic separated by central angle A,

must satisfy the following familiar equstions which Bssume the conventions

illustrated in figure 3.

rI : p rs = p
i + e cos(S) i + e cos (S+A)

Eliminating (p) and combining,

r: (i + e cos(S)) = r2 (i + e cos (S+A))

e (r: cos(S) - r_ cos (S+A)) = r2 - r:

e = r_ - r:

rI cos(S) -r_ cos (S+A)

Or, making the substitution of R = r_/r:

e = R - i

cos(s)- R cos(s+A)

A means of graphically illustrating the variation of eccentricity as s function

of S can be derived from the equation immediately preceeding the substitution

of R for r2/r: • It can be seen that the numerater of this equation (r2 - r: )

is the difference between the magnitude of the two vectors. The denominator

(tacos(S)- r2 cos(S+A)) is the algebraic difference of the projections of

rI and r_ on the horizontal axis.

,, kA "-_._ /
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From this graphic mode], values of S correspondJnc to extreme wJ]ues of

eccentricity could be derived for any vector set.

Appendix 2 - Eccentricity _t S]

In the following equation for eccentricity derived in appendix i,

e= r,- r1

rI cos_S_ -" r_ cos(S+A)

the denominator is actually the algebraic difference between the

projections of rI and r_ on the horizontal axis. Since by definition

at SI these two projections are equal in magnitude and sign, the

denominator of the above equation will be zero and eccentricity will

be infinite.

Appendix 3 - Expressions for $2 and $6

On a parabola, the two positions at r I and r_ separated by central angle

A must satisfy the following familiar equations,

P P
r I = r2 =

1 + cos(S) 1 + cos(_+A)

Eliminating (p) by combination and making the substitution of R = r2/r I

1 + cos(s): R (i+ cos(S+A))

Expanding the cosine expression in the right member of this equation,

1 + COS(S) : R (I + cos(S) cOS(A) sin(S) sin(A))

Dividing by cos(S) and collecting terms,

1 -R cos(A)+ R tan(S)_in(A)= l (R - i) : (R- l) sec(S)
cos(s)

Substituting $tan_'(S) + i for sec(S) and squaring,

(1 R cos(A))_ - )_- + 2 (1 R cos(A)) R tan(S) sin(A) + (R tan(S) sin(A)

(R - i)_ (tanO(S) + I)

Collecting terms yields a quadratic in tan(S)

tan_(S) (R_ sin2(A) - (R - i)_) + tan(S) 2 R sin(A) (i - R cos(A)) +

(1 - _ cos(A))_- (R- l)_ = 0
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Th]_. quadratic can be simplified by making the following substitutions:

X = R sin(A) Y : i - R cos(A) Z=R- i

tan_(S) (* - Z') + tan(S) 2 X Y + Y - Z

The two roots of this quadratic are thus given by the following:

tan(S) = - 2 X Y ± $4 )T Y_ - 4 ()T - Z_) (Y_- - Ze)

: - X y+ Z SX_ + y_ - 2?.

X_- - 22

Experience has shown that the positive sign option in this last equation

always corresponds to a finite direct flight time, whereas the negative sign

option always corresponds to an infinite direct flight time. Thus, by

definition the positive sign option always yields $2 and the negative sign

option always yields $6.

tan(S2) : - X Y + Z JX_ + Y_ - Z_

X_ _ Z_

tan(S6) = - X Y - Z 4X_ + Y_ - Z2

X2 _ Z_

S6 will always be in either the ist or 2nd quadrant and $2 will always be in

either the ist, 2rid, or 4th quadrants. In other words,

-90o < $2 < 180 ° 0 < $6 < 180 ° where $2 < $6

The preceeding expressions for S2 and $6 are presented in arc-tangent form for

computer programming convenience. The denominator.of these expressions are such

that 900 values of both $2 and $6 will be given when X_ = Z_ . This ambiguity does

not exist in the following arc-cosine expression, the derivation of which is not

given here because it is so similar to that of the arc-tangent expression.
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-1
S : cos

Substituting the equivalence X = Z in this equation yields a 90 ° value of S

when the negative sign option is taken, agreeing with the arctangent expression.

-_(× -i
Y - XY_

S = cos _ +'_--) : cos (O) = 90o

However, taking the positive sign option yields a second root, which the

arc-tangent expression does _ot.

S = cos X_ +

In order to express this second root in arc-tangent form, it is necessary

to have it expressed in both arc-cosine and arc-sine form. The general

arc-sine expression is as follows

-I(X Z ± Y _X_ + Y_ - Z_I)S = sin X_ + y_

Substituting the equivalence X = Z it can be seen that the positive

sign option yields a 90 ° value of S, corresponding to the negative sign

option in the arc-cosine expression.

S = sin + y2 = sin (I) =

Combining the positive sign option arc-cosine expression and the negative

sign option arc-sine expression yields an arc-tangent expression for the

second root.

s : tan \cos(S; tan _ Y

The simple rules derived from experience determining which of $2 and $6 is

90o and which is given by the preceeding equation when X_ = Z_, and the

quadrants in which they lie, are as follows:

when A < 90 ° S2 = 90o $6 = tan _ , in 2nd quadrant

* Condition of equality not necessary to consider since when A = 90o X cannot

equal Z, which is the situation under consideration.
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when 90o < A S6 : 90 °
$2 = tan XY in ist or 4th quadrants

The preceeding expression for the non-9 O° root of S when Xe = Z_ can also

be derived from the quadratic equation used in the derivation of the

general arc-tangent expressions for S2 and S6; the tan s (S)term of this

equation becomes zero when Xe = Ze leaving a linear equation in tan(S).

The quadrant in which $6 lies, either ist or 2nd, can be readily determined

from the sign of the argument of its arc-tangent expression. The quadrant

in which $2 lies, either ist, 2nd, or 4th is determined by the signs of both

the complete argument and the denominator (X_ Z2) of the argument of its

arc-tangent expression, and the magnitude of A. Needless to say, if the

complete argument is positive, $2 is in the ist quadrant. If the complete

argument is negative and A is greater than 90o , $2 is in the 4th quadrant. If

the complete argument is negative and A is less than 90 ° , $2 will be in the

2nd quadrant if the denominator of the argument is negative, or $2 will be in

the 4th quadrant if this denominator is positive.

The following bit of program logic in FORTRAN summarizes the calculation of

$2 and $6 and the determination of the quadrants 'in which they lie for all

possible cases, including cases where X_ = Z_. The arc-tangent function

(ATAN) is assumed to yield a value in either the ist or 4th quadrants,

depending on the sign of its complete argument. It is also assumed that R,

X, Y, and Z have been defined.
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DENOM = X * X - Z x Z

CHAR : SQRT (X * X + Y * Y - Z * Z)

C = 0.O

IF (DENOM) 6, 3, 7

3 hum :A_AN ((×* ×- Y-Y) / (2.0*x-Y))

IF (A - PI/2.o) 4, 4, 5

4 s2 --PI/2.o

$6 = PI + DUMA

GO TO 12

5 $6 = PI/2.0

$2 = DUMA

GO TO 12

6 c=PI

T s6 = ATAN (( -X * Y - Z * C_R) / nENOM)

IF ($6) 8, 9, 9

8 s6 = PI + s6

9 $2 : ATAN ((-X * Y+ Z * CHAR) / DENOM)

IF (S2) iOj 12_ 12

I0 IF (A - PI/2.0) ii, 12, 12

ii S2 = S2 + C

12 CONTINUE

A-6
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A_pendix 4 - Expression for S3

The equation for eccentricity as derived in appendix ] is

R - i
C =

cos(S) - R cos(S+A)

Taking the derivative of this expression with respect to S and setting

it equal to zero,

de -(R - I) (-sin(S) + R sino(S+A))
d-_: (cos(S)- R cos(S+A))_ : 0

The value of S satisfying this equation is denoted as S3 by definition.

In order for this equation to be satisfied, its numerator must equal zero,

wDich requires the following since R _ i:

sin(SS) : R sin(Sg+A)

Expanding the sine coefficient in the right member of this equation,

sin(S3) : R (sin(S3) cos(A) + sin(A) cos(S3))

sin(sJ(_- _ cos(A)): R sin(A)cos(Sj

tan(S3) sinIS31 R sin(A) sin(A)
:cos_s3_ :l- R cos(A) :l/_- cos(A)

As pointed out in the text, S9 is that value of S such that the projections

of r_ and r_ on an axis perpendicular to the periapsis horizontal, are equal

in magnitude and coincident. This condition is stated explicitly in the

third equation above.

Appendix 5 - Approximate expression for S5

$5, which corresponds to the ellipse having minimum period which can fit

a vector set, must lie between S4 and $6. Experience shows that the

period of the ellipse fitting a vector set is always decreasing at $4 as

S is increasing. At S6, the period goes to an infinite limit, the conic

fitting the vector set having become a parabola.
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Al)pend]x 5 (Con)

It would thus seem that a logical form of an empirical expression for

$5 would be as follows:

$5 : S4 + ($6 - $4) f

where the fractional coefficient (f) of the difference between $6 and $4 is

expressed as an empirical function of the values of R and A of the vector set.

However, experience has shown that this form does not work as well as the

following form,

$5 = $4 + ($7-$4) f

This form would not seem to be logical in that $7, which is the implied

upper limit of $5 when f=l in this form, is outside the range of elliptical

conics with which we are concerned. The range of from S6 to S7 is associated

only with non-multiple orbit indirect trajectories, usually having very short

flight times. Since both $4 and $7 are simple explicit functions of A, this

form of empirical equation for $5 can be restated as,

s5 = 18o ° - A + A__£f
2

A computer program was used to iter_tively derive the ellipse having the

minimum period which fits a given vector set (and hence, to derive $5).

Values of $5 were thus calculated for numerous vector sets having different

combinations of R and A over wide ranges of their values. The following

empirical equation_ having the form past described, was then derived to

express these calculated values of $5 as functions of R and A.

_ As5 = 18o ° A +T-

In most instances, the value of $5 as given by this equation is within a

degree of arc of the actual value.
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The following equation, derived in appendix I, gives the eccentricity of

any conic fitting a vector set corresponding to any value of S.

e= R - i

cosCs)- cos(S÷A)

Substituting the value of $7, which is 180 ° - A/2, into this equation,

= R - i

es7 cos(180 ° A/2) - R cos(180 ° - A/2 + A)

Since

= R - i

cos(Z80 ° "'A/2) - R cos(Z80 ° + A/2)

cos(180 ° - A/2) : cos(180 ° + A/2) and cos(180 O - A/2) = -cos(A/2) ,

R - 1 = sec(A/2)
es7 = (R - 1) cos(A/2)

At $7, the cosine of the true anomalies of both rI and r is equal to

-cos(A/2). Substituting this value for cos(S) in the familiar positional

equation as applied to rl,

P P P P
r _ _ _

i

1 + e cos(S) 1 - cos(A/2) sec(A/2) 1 - 1

_e result is that since rI and r2 are known to be finite, the semi-latus

rectum (p) of the hyperbola fitting a vector set at $7 must be zero.

This $7 hyperbola is actually coincident with rI and r2 and passes through

the center of attraction.

In appendix i0, it is sh_n that the coefficient of all equations

expressing flight time from periapsis as functions of true anomaly, radius,

and eccentricity, is

Ca l_, which is equal to p

Since p is zero at $7_ this coefficient of the aforementioned hyperbolic

flight time equation will be zero, resulting in a zero flight time.
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Appendix "1' - Variation of significant values of S as functions of R lind A.

The preceding Five fign_res illustrate the dependence of the significant

values of SI to S7 on the values of R and A of vector sets. Each figure

represents a fixed value of R and each curve in a figure represents one

of the seven significant values of S. The ordinate of each figure represents

all possible values of A of from 0° to 180 °. The abscissa of each figure

represents the three quadrants of from -900 to 1800 within which values of

S exist. As projected on this abscissa scale, the intersections of a

horizontal line, corresponding to a given value of A, with the seven curves,

will represent the magnitudes of the seven significant values of S.

Appendix 8 - Invarlance of (_) when A = 1800

For any conic fitting a vector set, the following two positional equations

must be simultaneously satisfied:

P P
r I -- r 2 --

i + e cos(S) i + e cos(S+A)

Combining these two equations by eliminating (p), and substituting the

condition of A = 180 °,

r_ (i + e cos(S)) = re (1 + e cos(S + 180°)) : r_ (i - e cos(S))

From this equation, the follo_ing expression for (e) is derived,

e(A:180o) :

Taking the derivatives of this expression with respect to S,

de sin{S (._ - r1_ _
ds (A=lSO°) : cos  Sl + I

The following expression for the derivative of (p) with respect to S is

derived from the first equation above:

dS : (cos(s)Y 'dee in(s))

Substituting the expressions for (e) and de/dS when A=I80 ° in this equation_

the value of the equation is found to be zero. This indicates that when

A=IS0 °, (p) is a function of r_ and re and is independent of S.
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dp Icos(S) sin(S) /r__ - rll _ _ {rr_ - r,_I

dS (A=IaO °) = r_ I cos :_(S) _r I + r;_I cos_) _r_ + rJl = 0

Substituting the expression for eccentricity when A=Ia0 ° in the first

equation gives the following expression for (p):

= r1{I + _ ----_r1_= 2 r_____r
P(A=Ia0 °) t r2 + rl/ rI + r_

Appendix 9 - Expression for e
minp

The following familiar conic equations must be satisfied by any conic

fitting any vector set:

P P

r_ = 1 + e cos(S) a = 1---U-7

Eliminating (p) from these equations yields the following equation for (a)

a = r-n (i + e cos(S))
1 - e2

When r1=r_, the value of S is a constant in any Lambert's problem. The

derivative of (a) _ith respect to eccentricity is thus,

rll eda (i- ee) r cos(S) - + cos(S)) (-2) e

de = (i _

Equating this derivative to zero and solving for its root,

(i - e_) cos(S) + 2 e (I + e cos(S)) : 0

cos(s)+ 2 e + cos(s)= o

-2 ± 1,_- s4)oos_(s)-1 _ sin(S)eminp - 2 cos( ' = cos(S)

The table on page 28 shows that of the two possible values of S in any

problem wherein r_--r2, the magnitude of S corresponding to the minimum

period ellipse is ±(180 ° - A/2). Substituting this value for S and taking

the appropriate sign option such that eminp is always positivej

_ 1 - sin(A/2) sec(A/2) - tan(A/2)
emi np cos (A/2 ) =

The following graph shows the variation of eminp as a function of A.
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Substituting the expression for emlnp and the value of (180°-A/2) for S

in the first equation, yields the following equation for (p):

p = r (1 + e cos(S)) = r (1 - cos(A/2) (sec(A/2) - tan(A/2)))

: r (i - 1 + sin(A/2)) : r sin(A/2)

This relationship indicates that on the minimum period ellipse fitting 8

vector set wherein rI--T2, the projection of either r I or r s on a parallel

to the minor axis is equal to (p).
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Appendix 10 - F]i6ht time equations and series

Flight time (FT), expressed as a function of true anomaly (U)_ between two

positions on a conic trajectory having true anomalies el and 82, is given

by the following integral expression;

3

C {-as deFT ---_ (i + e cos(e))_
e{'

where C is the angular momentum equal to (r v cos(I)) at any position on

the conic_ and _ is the gravitational constant of the central force field.

There is no single equation expressing the integral in the above equation

for all values of eccentricity (e). Three different equations must be used,

each being applicable to values of eccentricity which are either less than

unity, equal to unity, or greater than unity. The resulting flight time

equations are referred to respectively as elliptical, parabolic, and

hyperbolic.

As conventionally stated in their simplest form, these flight time equations

express flight time from periapsis to a position having true anomaly (8).

These equations are thus solutions of the above integral equation wherein

e_ =0. The flight time equations presented herein are of this form.

There are numerous ways of expressing these three flight time equations,

each involving different combinations of different orbital elements of the

conic trajectory. Because in the method of solving Lambert's problem with

which this paper is concerned the only orbital element necessarily involved

is eccentricity, the flight time equations presented here do not involve

any orbital elements other than eccentricity. These three flight time

equations, thus unconventionally expressed, might appear unfamiliar and

cumbersome compared to the more conventional forms involving additional

orbital elements.

The following are alternate expressions for the coefficient of the integral

in the first equation,
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3 :_ :_ = (r (1 + e cos(O))) 3/2c = =r + e cos(0))
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the last expression involving no orbital elements other than eccentricity.

In each flight time equation, this coefficient will be denoted simply
3 2

as C /_ and the integral will be expressed as a function of @ and (e).

The units of this coefficient are time whereas the integral expressions

are dimensionless.

In the following flight time equations, the arctangent function is

assumed to yield values in the first or fourth quadrants_ depending

upon the sign of its complete argument. Thus, flight time as given

by these equations will be positive when 8 is in the first or second

quadrants, and negative when @ is in the third or fourth quadrants.

Elliptical flight time (e < i)

cS[ ( - e= 2 ).,/e tan-i I} _ ey tan(O/2)) --
e sin(O)

(1 - e2) (1 + e cos(B) )

Parabolic flight time (e = i)

3

C tan( 0/2 )FT =_
2

i + tan (8/2
3

= C tan(O/2) (2 + cosl@t)FT -_ 3 i + cost@

or_

Hyperbolic flight time (e > i)

C
sin(B)e

_.](e 1)/(e-l) - tan(e/2)/]
FT= y (_-i) (l+e cos(O)) - "(-_3/g Inf_ + tanle/2) l

The most commonly used flight time equation will be the elliptical.

This equation is used for all values of S between $2 and $6. The period

of the ellipses within this range, used in calculating multiple orbit

flight times, is given by,
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2 _ /_P= -7 (1

The hyperbolic flight time equation is used only for values of S

between S1 and $2 and between $6 and S7. The parabolic flight time

equation represents the limit which both the elliptical and hyperbolic

equations approach as S approaches $2 or $6 and eccentricity approaches

unity. In the iterative curve-fit logic described in the last section

of this paper, the parabolic flight time equation would only be used to

calculate either the direct flight time at $2 or indirect flight time

at $6 for the initial curve fit of a problem.

Difficulty is sometimes encountered when the desired non-multiple orbit

flight time in a given Lambert's problem is very close to, but not

exactly equal to, the finite parabolic flight time. This difficulty

is due to the erratic behavior of both elliptical and hyperbolic

flight time equations in actual calculations when eccentricity is very

close to unity. In these cases_ the calculated values of flight time

do not vary continuously in approaching the finite parabolic flight

time as eccentricity approaches unity. This difficulty is reduced by

using more significant figures in the calculations. Needless to say_

if one could use an infinite number of significant figures in using

these flight time equations_ this difficulty would not exist.

When the condition is satisfied that,

1- e (0/2
l+e

< 1

it is possible to use the following series expression for flight time

past periapsis :

C (2+e(l+cos(8))) tan(@/2 ) tan(e/a) (l-e) tanS(e/e)= 2 - * .....

While this series expression is not as convenient to use as the three

explicit equations, it has the advantage that it will give elliptical,

parabolic_ and hyperbolic flight times. This series expression is
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well-behaved and continuous across the parabolic condition and thus

offers a means of dealing with the discontinuity difficulty Just

described.

It can be seen that this series will converge whenever eccentricity

is greater or equal to unity, regardless of the true anomaly. When

eccentricity is less than unity, convergence will be a function of e.

Thus, the series expression can be used for any hyperbolic or parabolic

trajectory but is restricted in application to elliptical trajectories.

The following figure graphically illustrates this restriction.

H

• , ./" g.l /

i ,/ , ............./ ' " ."/ / .I/"+ __

/,_ / /., ..- ...i -1_ ca'_; e

/

-- Periapsis of trajectories

-_ _ SO

The series expression can be used for positions on all conics which

are "outside" a parabolic boundary, the periapsis of which is one half

the magnitude of and coincident with that of the conic.


